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Introduction to Fiber Optic Distributed Acoustic Sensors (DAS)

DAS is designhed to measure signals at a high spatial
resolution (~ 1 m) over large distances (multiple km) —

= DAS uses the fiber itself as a sensor to measure strain (or
strain rate) along its length

= |ts development has opened up a massive source of data for
subsurface characterization / monitoring

= Questions:
— How can we optimize the performance of DAS?
— How do we interpret the data we collect?

l Lawrence Livermore National Laboratory NVYSE 2
National Nuclear Security Administration

LLNL-PRES-751645




DAS Examples — Microseismicity

= Comparison of traditional geophone and DAS
monitoring programs (Hull et al., 2017)

— Sensors located in an offset vertical well, with
hydraulic stimulations in a nearby horizontal well

— DAS config: L=760 m, L,,,,c = 10 m, F; = 2 kHz
— Geophone config not specified (lower resolution)

— Microseismic events recorded during an example
stage

» DAS =31 events (minimum M, = -2)
» Geophones = 785 events (minimum M,, = -2.68)

* Note: different event detection algorithms used

Depth

'Y Observation well
N

T8 |

\ > :;‘. \ Stages
.,

Geophone
with
Tiltmeters

clear SV-P ‘
conversions |

L Lawrence Livermore National Laboratory

LLNL-PRES-751645




DAS Examples — Waterfall Plots and Low-Frequency Strain

Intensity waterfall

= Hydraulic fracture geometry characterization attempts
(Jin and Roy, 2017)
— Fracture stimulation and DAS in adjacent horizontal wells
— DAS configuration: Ly, e =1 M, Ly, = 5m, F =10 kHz

Measured depth

= Waterfall plots

— Vibrational energy for a given frequency band
— Excited by the opening and fluid flow in fractures?
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= Low-frequency strain measurements

— Carefully filter the data to estimate near-DC component 1
of strain rate (this example: f < 0.05 Hz) 1

— Matches the psuedostatic fracturing process
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Large-Scale Geomechanical Modeling

= Goal: Develop a framework for interpreting DAS
measurements that is robust, quantitative, and
grounded in geomechanics

= Due to its topicality, focus our initial efforts on
hydraulic fracture monitoring

= Implement a model of DAS in GEOS (LLNL)
— HF modeling from near-wellbore to reservoir scales
— Geothermal energy production
— Microseismicity
— Etc.
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GEOS Fiber Modeling

= Fiber model:

— The scales of interest are way too large to explicitly mesh the fiber
 Instead, define a virtual fiber as a set of nodes in the underlying FE mesh
« Assume that the fiber is perfectly coupled to the rock and is insensitive to shear

— Record the nodal displacement along the virtual fibers at high frequency
— Use central-difference operators to calculate strain and/or strain-rate

— Apply an arbitrary gage length applied via a convolutional filter during post-processing

= The target DAS signals are often very small (~1 ng/s)

— Challenging constraint for large heterogeneous models, explicit discontinuities

— We use a combination of implicit/explicit time-stepping to bring the model into an initial
equilibrium state

— Before loading, we track the drift/noise in the model and require a S/N of at least 10
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GEOS Fiber Modeling

= |Instead of looking at a particular case study, focus on a set of idealized models

— Geologic model sensitivity
— Stimulation design sensitivity
— Target low-frequency DAS on three fibers (f << 1 Hz)
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Geological Model Sensitivity - Design

= Base model:
— 50 m tall PKN fracture propagating from a horizontal wellbore
— In-situ stress state is normal
— Fluid injected into a single perforation cluster for 80 minutes at 0.05 m3/s

= Increase the complexity of the model to isolate signals of interest in the DAS

Model | Model Il Model Il
(PKN) (+ Stress Barriers) (+DFN)
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Geological Model Sensitivity — HF Generation Examples

The addition of the stress barriers (Model I1)

The base model (Model I) results _ AV
and DFN (Model 111) introduces significant

in a simple, height-limited fracture
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Geological Model Sensitivity — DAS Results
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Geological Model Sensitivity — DAS Results
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Geological Model Sensitivity — DAS Results
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Geological Model Sensitivity — DAS Results
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Geological Model Sensitivity — Conclusions

= Low frequency DAS measurements may be used to constrain fracture geometry
= Synthetic DAS measurements may be used to design/optimize field deployments

= Simultaneous measurements in horizontal (common) and vertical offset wells (less
common) allows best resolution

= DAS measurements may also be a useful tool for monitoring the interaction of
fractures with barriers
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Future Applications — Machine Learning

= Current effort to design machine learning approaches
(CNN) to interpret these data

= Use our approach to generate a labeled training
dataset:

— Length/height of generated fractures

— Location/timing of triggered microseismic events

— Interaction with fracture barriers

— Proppant and Multiphase related phenomena
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GEOS THM Coupling Diagram
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Proppant Placement Sensitivity — Design

= Begin with Model Il (stress barriers) as a reference e
— Incorporate a more realistic pumping schedule into the design :
— Modify the fluid leakoff rate into the surrounding formation
— Track Changes in the DAS measured along the horizontal fiber F,,
— Compare to distribution of proppant in the generated fracture
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Proppant Placement Sensitivity — Results
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Proppant Placement Sensitivity — Results
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